Copied to
clipboard

G = C42.145D6order 192 = 26·3

145th non-split extension by C42 of D6 acting via D6/C3=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C42.145D6, C6.742+ 1+4, C6.932- 1+4, Dic3⋊D443C2, D63Q834C2, (C2×D4).113D6, C4.4D417S3, (C2×Q8).108D6, C22⋊C4.38D6, C427S331C2, C23.9D647C2, C2.54(D4○D12), (C2×C6).228C24, D6⋊C4.73C22, C2.54(Q8○D12), C12.6Q829C2, C23.14D635C2, C2.78(D46D6), (C2×C12).633C23, (C4×C12).222C22, (C6×D4).213C22, (C2×D12).35C22, C4⋊Dic3.52C22, (C22×C6).58C23, C23.60(C22×S3), (C6×Q8).131C22, Dic3.D443C2, C23.21D628C2, Dic3⋊C4.84C22, C22.249(S3×C23), (C2×Dic6).39C22, (C22×S3).100C23, C34(C22.56C24), (C2×Dic3).118C23, C6.D4.60C22, (C22×Dic3).147C22, (C3×C4.4D4)⋊20C2, (S3×C2×C4).123C22, (C2×C4).201(C22×S3), (C2×C3⋊D4).66C22, (C3×C22⋊C4).69C22, SmallGroup(192,1243)

Series: Derived Chief Lower central Upper central

C1C2×C6 — C42.145D6
C1C3C6C2×C6C22×S3S3×C2×C4C23.9D6 — C42.145D6
C3C2×C6 — C42.145D6
C1C22C4.4D4

Generators and relations for C42.145D6
 G = < a,b,c,d | a4=b4=1, c6=d2=b2, ab=ba, cac-1=a-1b2, dad-1=a-1, cbc-1=b-1, dbd-1=a2b-1, dcd-1=c5 >

Subgroups: 608 in 220 conjugacy classes, 91 normal (31 characteristic)
C1, C2, C2, C3, C4, C22, C22, S3, C6, C6, C2×C4, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, C12, D6, C2×C6, C2×C6, C42, C22⋊C4, C22⋊C4, C4⋊C4, C22×C4, C2×D4, C2×D4, C2×Q8, C2×Q8, Dic6, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C3×Q8, C22×S3, C22×C6, C4⋊D4, C22⋊Q8, C22.D4, C4.4D4, C4.4D4, C42.C2, Dic3⋊C4, C4⋊Dic3, C4⋊Dic3, D6⋊C4, C6.D4, C4×C12, C3×C22⋊C4, C2×Dic6, S3×C2×C4, C2×D12, C22×Dic3, C2×C3⋊D4, C6×D4, C6×Q8, C22.56C24, C12.6Q8, C427S3, Dic3.D4, C23.9D6, Dic3⋊D4, C23.21D6, C23.14D6, D63Q8, C3×C4.4D4, C42.145D6
Quotients: C1, C2, C22, S3, C23, D6, C24, C22×S3, 2+ 1+4, 2- 1+4, S3×C23, C22.56C24, D46D6, D4○D12, Q8○D12, C42.145D6

Smallest permutation representation of C42.145D6
On 96 points
Generators in S96
(1 26 39 79)(2 74 40 33)(3 28 41 81)(4 76 42 35)(5 30 43 83)(6 78 44 25)(7 32 45 73)(8 80 46 27)(9 34 47 75)(10 82 48 29)(11 36 37 77)(12 84 38 31)(13 54 86 72)(14 67 87 49)(15 56 88 62)(16 69 89 51)(17 58 90 64)(18 71 91 53)(19 60 92 66)(20 61 93 55)(21 50 94 68)(22 63 95 57)(23 52 96 70)(24 65 85 59)
(1 67 7 61)(2 62 8 68)(3 69 9 63)(4 64 10 70)(5 71 11 65)(6 66 12 72)(13 78 19 84)(14 73 20 79)(15 80 21 74)(16 75 22 81)(17 82 23 76)(18 77 24 83)(25 92 31 86)(26 87 32 93)(27 94 33 88)(28 89 34 95)(29 96 35 90)(30 91 36 85)(37 59 43 53)(38 54 44 60)(39 49 45 55)(40 56 46 50)(41 51 47 57)(42 58 48 52)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)
(1 6 7 12)(2 11 8 5)(3 4 9 10)(13 93 19 87)(14 86 20 92)(15 91 21 85)(16 96 22 90)(17 89 23 95)(18 94 24 88)(25 32 31 26)(27 30 33 36)(28 35 34 29)(37 46 43 40)(38 39 44 45)(41 42 47 48)(49 72 55 66)(50 65 56 71)(51 70 57 64)(52 63 58 69)(53 68 59 62)(54 61 60 67)(73 84 79 78)(74 77 80 83)(75 82 81 76)

G:=sub<Sym(96)| (1,26,39,79)(2,74,40,33)(3,28,41,81)(4,76,42,35)(5,30,43,83)(6,78,44,25)(7,32,45,73)(8,80,46,27)(9,34,47,75)(10,82,48,29)(11,36,37,77)(12,84,38,31)(13,54,86,72)(14,67,87,49)(15,56,88,62)(16,69,89,51)(17,58,90,64)(18,71,91,53)(19,60,92,66)(20,61,93,55)(21,50,94,68)(22,63,95,57)(23,52,96,70)(24,65,85,59), (1,67,7,61)(2,62,8,68)(3,69,9,63)(4,64,10,70)(5,71,11,65)(6,66,12,72)(13,78,19,84)(14,73,20,79)(15,80,21,74)(16,75,22,81)(17,82,23,76)(18,77,24,83)(25,92,31,86)(26,87,32,93)(27,94,33,88)(28,89,34,95)(29,96,35,90)(30,91,36,85)(37,59,43,53)(38,54,44,60)(39,49,45,55)(40,56,46,50)(41,51,47,57)(42,58,48,52), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,93,19,87)(14,86,20,92)(15,91,21,85)(16,96,22,90)(17,89,23,95)(18,94,24,88)(25,32,31,26)(27,30,33,36)(28,35,34,29)(37,46,43,40)(38,39,44,45)(41,42,47,48)(49,72,55,66)(50,65,56,71)(51,70,57,64)(52,63,58,69)(53,68,59,62)(54,61,60,67)(73,84,79,78)(74,77,80,83)(75,82,81,76)>;

G:=Group( (1,26,39,79)(2,74,40,33)(3,28,41,81)(4,76,42,35)(5,30,43,83)(6,78,44,25)(7,32,45,73)(8,80,46,27)(9,34,47,75)(10,82,48,29)(11,36,37,77)(12,84,38,31)(13,54,86,72)(14,67,87,49)(15,56,88,62)(16,69,89,51)(17,58,90,64)(18,71,91,53)(19,60,92,66)(20,61,93,55)(21,50,94,68)(22,63,95,57)(23,52,96,70)(24,65,85,59), (1,67,7,61)(2,62,8,68)(3,69,9,63)(4,64,10,70)(5,71,11,65)(6,66,12,72)(13,78,19,84)(14,73,20,79)(15,80,21,74)(16,75,22,81)(17,82,23,76)(18,77,24,83)(25,92,31,86)(26,87,32,93)(27,94,33,88)(28,89,34,95)(29,96,35,90)(30,91,36,85)(37,59,43,53)(38,54,44,60)(39,49,45,55)(40,56,46,50)(41,51,47,57)(42,58,48,52), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96), (1,6,7,12)(2,11,8,5)(3,4,9,10)(13,93,19,87)(14,86,20,92)(15,91,21,85)(16,96,22,90)(17,89,23,95)(18,94,24,88)(25,32,31,26)(27,30,33,36)(28,35,34,29)(37,46,43,40)(38,39,44,45)(41,42,47,48)(49,72,55,66)(50,65,56,71)(51,70,57,64)(52,63,58,69)(53,68,59,62)(54,61,60,67)(73,84,79,78)(74,77,80,83)(75,82,81,76) );

G=PermutationGroup([[(1,26,39,79),(2,74,40,33),(3,28,41,81),(4,76,42,35),(5,30,43,83),(6,78,44,25),(7,32,45,73),(8,80,46,27),(9,34,47,75),(10,82,48,29),(11,36,37,77),(12,84,38,31),(13,54,86,72),(14,67,87,49),(15,56,88,62),(16,69,89,51),(17,58,90,64),(18,71,91,53),(19,60,92,66),(20,61,93,55),(21,50,94,68),(22,63,95,57),(23,52,96,70),(24,65,85,59)], [(1,67,7,61),(2,62,8,68),(3,69,9,63),(4,64,10,70),(5,71,11,65),(6,66,12,72),(13,78,19,84),(14,73,20,79),(15,80,21,74),(16,75,22,81),(17,82,23,76),(18,77,24,83),(25,92,31,86),(26,87,32,93),(27,94,33,88),(28,89,34,95),(29,96,35,90),(30,91,36,85),(37,59,43,53),(38,54,44,60),(39,49,45,55),(40,56,46,50),(41,51,47,57),(42,58,48,52)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96)], [(1,6,7,12),(2,11,8,5),(3,4,9,10),(13,93,19,87),(14,86,20,92),(15,91,21,85),(16,96,22,90),(17,89,23,95),(18,94,24,88),(25,32,31,26),(27,30,33,36),(28,35,34,29),(37,46,43,40),(38,39,44,45),(41,42,47,48),(49,72,55,66),(50,65,56,71),(51,70,57,64),(52,63,58,69),(53,68,59,62),(54,61,60,67),(73,84,79,78),(74,77,80,83),(75,82,81,76)]])

33 conjugacy classes

class 1 2A2B2C2D2E2F2G 3 4A···4E4F···4K6A6B6C6D6E12A···12F12G12H
order1222222234···44···46666612···121212
size111144121224···412···12222884···488

33 irreducible representations

dim11111111112222244444
type++++++++++++++++-+-
imageC1C2C2C2C2C2C2C2C2C2S3D6D6D6D62+ 1+42- 1+4D46D6D4○D12Q8○D12
kernelC42.145D6C12.6Q8C427S3Dic3.D4C23.9D6Dic3⋊D4C23.21D6C23.14D6D63Q8C3×C4.4D4C4.4D4C42C22⋊C4C2×D4C2×Q8C6C6C2C2C2
# reps11122222211141121222

Matrix representation of C42.145D6 in GL8(𝔽13)

66990000
33090000
071070000
1001070000
000000120
000000012
00001000
00000100
,
001210000
121211120000
55100000
45100000
00002400
000091100
00000024
000000911
,
88380000
88830000
50550000
55550000
0000121200
00001000
00000011
000000120
,
88830000
88380000
50550000
05550000
0000121200
00000100
00000011
000000012

G:=sub<GL(8,GF(13))| [6,3,0,10,0,0,0,0,6,3,7,0,0,0,0,0,9,0,10,10,0,0,0,0,9,9,7,7,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0],[0,12,5,4,0,0,0,0,0,12,5,5,0,0,0,0,12,11,1,1,0,0,0,0,1,12,0,0,0,0,0,0,0,0,0,0,2,9,0,0,0,0,0,0,4,11,0,0,0,0,0,0,0,0,2,9,0,0,0,0,0,0,4,11],[8,8,5,5,0,0,0,0,8,8,0,5,0,0,0,0,3,8,5,5,0,0,0,0,8,3,5,5,0,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,1,12,0,0,0,0,0,0,1,0],[8,8,5,0,0,0,0,0,8,8,0,5,0,0,0,0,8,3,5,5,0,0,0,0,3,8,5,5,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,12,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,12] >;

C42.145D6 in GAP, Magma, Sage, TeX

C_4^2._{145}D_6
% in TeX

G:=Group("C4^2.145D6");
// GroupNames label

G:=SmallGroup(192,1243);
// by ID

G=gap.SmallGroup(192,1243);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,232,758,219,1571,570,297,136,6278]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=1,c^6=d^2=b^2,a*b=b*a,c*a*c^-1=a^-1*b^2,d*a*d^-1=a^-1,c*b*c^-1=b^-1,d*b*d^-1=a^2*b^-1,d*c*d^-1=c^5>;
// generators/relations

׿
×
𝔽